

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3773–3776

Tetrahedron Letters

Formal synthesis of fostriecin by a carbohydrate-based approach α

J. S. Yadav,* I. Prathap and Bulli Padmaja Tadi

Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 21 December 2005; revised 8 March 2006; accepted 17 March 2006 Available online 17 April 2006

Abstract—The formal synthesis of fostriecin starting from D-glucose, involves chelation-controlled addition, Wittig rearrangement, ring closing metathesis and iodomethylenation, as described.

 $© 2006 Elsevier Ltd. All rights reserved.$

Fostriecin (CI-920) 1, a cytotoxic phosphate ester natural product isolated from Streptomyces pulveraceus, possesses potent anticancer activity against leukaemia and many other cell lines.^{[1,2](#page-2-0)} The cytotoxic properties of 1 are attributed to its selective inhibition of protein phosphatase $2A$ (PP2A).^{[3](#page-2-0)} The relative and absolute stereochemistry of 1 was established by Boger, 4 who also disclosed the first synthesis of the natural product,^{[5](#page-2-0)} as well as by preliminary SAR studies.^{[6](#page-2-0)} A number of total syntheses^{[7](#page-2-0)} as well as synthetic approaches to fostriecin have been reported in the literature.^{[8](#page-2-0)} However, it continues to be a challenging endeavor to synthesize this molecule using inexpensive and readily available raw materials via shorter routes.

Herein, we disclose a chiral pool approach to the C1– C13 fragment 2, a key intermediate in the Imanishi synthesis of fostriecin (Fig. 1).^{7d} The C14–C18 fragment has been prepared in a straightforward fashion, 9 and has also been attached to the C1–C13 fragment.^{7a,f,d}

Our approach to 2 is illustrated in [Scheme 1](#page-1-0), in which the key fragment 8 obtained from D-glucose, plays a central role, serving not only as the source of the C-9 and C-11 stereocentres, but also sets the stage for introducing the C-8 and C-5 stereocentres through chelation-controlled addition^{[10](#page-2-0)} of anion $9 (M = MgBr)$ and Wittig

Figure 1.

rearrangement.[11](#page-2-0) Asymmetric allylation and generation of the \overline{Z} -olefin by iodomethylenation^{[12](#page-2-0)} completed the synthesis of 2 ([Scheme 2](#page-1-0)).

Elimination of the triflate derived from glucose diacetonide 3^{13a} by treatment with DBU afforded olefin 4.^{[14](#page-2-0)} Subsequent hydrogenation of 4 in the presence of Raney-Ni in ethanol at 40 psi gave 5, whose spectral and analytical data were in agreement with the assigned structure.^{15a}

Selective deprotection of the 5,6-*O*-isopropylidene group, followed by sodium periodate mediated oxidative cleavage of diol 6 and Grignard reaction of the resulting aldehyde with methylmagnesium iodide in ether at $0^{\circ}C$, gave a diastereomeric mixture of alcohol 7, which was oxidized using PCC and NaOAc in $CH₂Cl₂$ to give the ketone 8. 15b Following the above sequence, a higher overall yield of ketone 8 (59%) was obtained from 3 as compared to earlier routes (44%) using the same starting material.^{[13](#page-2-0)}

Keywords: D-Glucose; Raney-Ni; Chelation-controlled addition; Wittig rearrangement; Wittig olefination; Chiral allylation; Ring closing metathesis, Iodomethylenation.

 $*$ IICT Communication No. 051213.

^{*} Corresponding author. Tel.: +91 40 27193434; fax: +91 40 27160512; e-mail: yadavpub@iict.res.in

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.116

Scheme 1. Reagents and conditions: (a) Ref. 12a; (b) Tf_2O , pyridine, CH₂Cl₂, 0 °C, 0.5 h, then DBU, rt, 16 h, 94%; (c) Raney-Ni, H₂, ethanol, 40 psi, 6 h, 98%; (d) 40% AcOH, rt, 6 h, 83%; (e) NaIO4 on silica gel, CH_2Cl_2/H_2O (8:2), 1 h; (f) MeMgI, ether, 0 °C, 2 h, 88% (for two steps); (g) PCC, NaOAc, CH₂Cl₂, rt, 12 h, 89%; (h) $9, -78$ to -50 °C, 3 h, 91% (9a alone 73%); (i) *n*-BuLi (5 equiv), THF, -100 °C, 3 h; (j) LiAlH₄, THF, 0 °C to rt, 2 h; 75% (for two steps, 12a alone 50%).

The stereocentre at C-8 of fostriecin was introduced by the chelation-controlled addition^{[10](#page-2-0)} of 9 (M = MgBr), generated from allyl propargyl ether and EtMgBr in THF at 0° C to ketone **8** in THF at -78 to -50° C for 3 h to afford a chromatographically separable mixture of diastereomers 10a and 10b in 91% yield in a ratio of 8:2. Additionally, the reaction of the lithium anion of 9 ($M = Li$) with ketone 8 was also examined under the same reaction conditions, which gave a mixture of 10a and 10b in a 3:7 ratio.

Compound $10a$ was subjected to Wittig rearrangement^{[11](#page-2-0)} by treatment with excess *n*-BuLi at -100 °C for 3 h to afford 11. Reduction of the triple bond using $LiAlH₄$ in THF afforded a separable mixture of diastereomers 12a and 12b in a 2:1 ratio (Scheme 1).

The stereocentres at C-8 and C-5 were also confirmed by establishing another route, for which ketone 8 was subjected to Wittig olefination with (carboethoxymethylidene)triphenylphosphorane and catalytic benzoic acid in refluxing toluene to afford E-ester 13 in 83% yield. The ester was reduced to allylic alcohol 14 using DI- $BAL-H$ in THF. Sharpless asymmetric epoxidation^{[16](#page-2-0)} of 14 proceeded efficiently to produce epoxide 15 in 90% yield in a 10:1 ratio. Although the mixture was

Scheme 2. Reagents and conditions: (a) Ph₃PCHCOOEt (3 equiv), C_6H_5COOH (cat), toluene, reflux, 16 h, 91% (*E*-isomer alone 83%); (b) DIBAL-H, THF, $-78-0$ °C, 2 h, 92%; (c) (+)-DIPT, Ti(O-*i*-Pr)₄, TBHP, 4 Å molecular sieves, CH₂Cl₂, -23 °C, 24 h, 90%; (d) TPP, CCl₄, reflux, 6 h; (e) *n*-BuLi, THF, -23 °C, 84% (two steps, 76%, 16); (f) EtMgBr, THF, 0° C, 1 h then $(CH_2O)_n$, reflux, 3 h, 79%; (g) LiAlH₄, THF, 0° C to rt, 2 h, 91%; (h) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, rt, 94%; (i) (+)-Ipc₂BOMe, allylmagnesium bromide, Et₂O, -100 to 23 °C, 1.5 h; 30% H₂O₂, pH 7 buffer, 23 °C, 12 h, 79%; (j) acryloyl chloride, DIPEA, CH_2Cl_2 , 0 °C, 2 h; (k) $(PCy_3)_2RuCl_2(=CHPh)$ (0.1 equiv), Ti(O-i-Pr)₄ (0.3 equiv), CH₂Cl₂, reflux, 12 h, 92% (for two steps); (l) 30% AcOH, 50 °C, 2 h, 92%; (m) Ph₃P⁺CHI I⁻, NaHMDS, HMPT, -78 °C to rt, 2 h, 63% (*Z:E* ratio $= 3:1$).

not separated at this stage, transformation by our methodology[17](#page-2-0) furnished acetylenic alcohol 16 in 76% yield after chromatography on silica gel, without contamination by the other diastereomer. Compound 16 when subjected to formylation gave 17 in 79% yield, which upon protection as its allyl ether, gave spectral and analytical data in agreement with the assigned structure of 10a. 18a

Triple bond reduction of 17 with LiAlH₄ in THF provided allylic alcohol 18. Oxidation of 18 with Dess– Martin periodinane gave aldehyde 19, which underwent asymmetric allylation^{[19](#page-3-0)} using $(+)$ - β -methoxydiisopinocamphenyl borane and allylmagnesium bromide at low temperature to afford 12a in 79% yield.

Chemoselective esterification of diol 12a with acryloyl chloride and DIPEA in CH_2Cl_2 at 0 °C gave an ester alcohol, which was subjected to ring-closing metathe- \sin^{20} \sin^{20} \sin^{20} (RCM) with Grubbs' 1st generation catalyst (0.1) equiv) in the presence of $Ti(O-i-Pr)₄ (0.3$ equiv) in refluxing CH_2Cl_2 for 12 h to afford lactone 20 in 92% vield. Cleavage of the 1,2-O-isopropylidene group of 20 by heating at 50 °C in 30% aq AcOH afforded the lactol 21. Iodomethylenation of lactol 21 gave the Z-isomer of 2 as the major product ($Z: E = 3:1$; [Scheme 2](#page-1-0)).

In conclusion, we have disclosed the synthesis of the key intermediate 2 in the formal synthesis of fostriecin using a carbohydrate-based approach, which would be of great use for the synthesis of various fostriecin congeners.

Acknowledgement

I.P. thanks CSIR, New Delhi, for the research fellowship.

References and notes

- 1. (a) Tunac, J. B.; Graham, B. D.; Dobson, W. E. J. Antibiot. **1983**, 36, 1595-1600; (b) Stampwala, S. S.; Bunge, R. H.; Hurley, T. R.; Willmer, N. E.; Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. J. Antibiot. 1983, 36, 1601–1605; (c) Hohanson, G. C.; French, J. C. J. Org. Chem. 1985, 50, 462–466.
- 2. (a) Jackson, R. C.; Fry, D. W.; Boritzki, T. J.; Roberts, B. J.; Hook, K. E.; Leopold, W. R. Adv. Enzyme Reg. 1985, 23, 193–215; (b) de Jong, R. S.; de Vries, E. G. E.; Mulder, N. H. Anti-Cancer Drugs 1997, 8, 413–418.
- 3. (a) Lewy, D. S.; Gauss, C. M.; Soenen, D. R.; Boger, D. L. Curr. Med. Chem. 2002, 9, 2005–2032; (b) de Jong, R. S.; Mulder, N. H.; Uges, D. R. A.; Sleijfer, D. T.; Hoppener, F. J. P.; Groen, H. J. M.; Willemse, P. H. B.; van der Graaf, W. T. A.; de Vries, E. G. E. Br. J. Cancer 1999, 79, 882–887.
- 4. Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem. 1997, 62, 1748–1753.
- 5. Boger, D. L.; Ichikawa, S.; Zhong, W. J. Am. Chem. Soc. 2001, 123, 4161–4167.
- 6. Buck, S. B.; Hardouim, C.; Ichikawa, S.; Soenen, D. R.; Gauss, C. M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D. L. J. Am. Chem. Soc. 2003, 125, 15694–15695.
- 7. (a) Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2001, 40, 3667–3670; (b) Reddy, Y. K.; Falck, J. R. Org. Lett. 2002, 4, 969-971; (c) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. Chem. Commun. 2002, 742–743; (d) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc. 2003, 125, 8238–8243; (e) Wang, Y. G.; Kobayashi, Y. Org. Lett. 2002, 4, 4615-4618; (f) Esumi, T.; Okamoto, N.; Hatakeyama, S. Chem. Commun. 2002, 3042–3043; (g) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 733–736; (h) Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666–3667; (i) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M.; Motoki, R.; Kobayashi, T.; Tamura, S. J. Am. Chem. Soc. 2005, 127, 17111–17117.
- 8. (a) Just, G.; O'Connor, B. Tetrahedron Lett. 1988, 29, 753–756; (b) Liu, S. Y.; Huang, D. F.; Huang, H. H.; Huang, L. Chin. Chem. Lett. 2000, 11, 957–960; (c) Cossy, J.; Pradaux, F.; BouzBouz, S. Org. Lett. 2001, 3, 2233– 2235; (d) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2002, 43, 2725–2729; (e) Marshall, J. A.; Bourbeau, M. P. Org. Lett. 2003, 5, 3197–3199; (f) Ramachandran, P. V.; Liu, H. P.; Reddy, M. V. R.; Brown, H. C. Org. Lett. 2003, 5, 3755–3757.
- 9. Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1999, 64, 23–27.
- 10. Still, W. C.; McDonald, J. H., III. Tetrahedron Lett. 1980, 21, 1031–1034.
- 11. Wittig, G.; Lohmann, L. Justus Liebigs Ann. Chem. 1942, 550, 260–262.
- 12. (a) Seyferth, D.; Heeren, J. K.; Singh, G.; Grim, S. O.; Hughes, W. B. J. Organomet. Chem. 1966, 5, 267–274; (b) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173– 2174.
- 13. (a) Schmidt, O. T. Methods Carbhydr. Chem. 1965, 2, 320– 324; (b) Wolfrom, M. L.; Hanessian, S. J. Org. Chem. 1962, 27, 1800–1804.

Reagents and conditions: (a) Ref. 12b; (b) PCC, NaOAc, CH₂Cl₂, rt, 12 h, 89%; (c) Pd/C, H₂, rt, 12 h, 98%; (d) MsCl, Et₃N, DMAP (cat), CH₂Cl₂, 0 °C–rt, 3 h, then DBU, rt, 12 h, 94%; (e) Raney-Ni, H₂, n-hexane, 98%.

- 14. Flechtner, T. W. Carbohydr. Res. 1979, 77, 262–266. 15. (a) Spectral data of compound 5: mp = 78-80 °C $[\alpha]_D^{25}$ -28.4 (c 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 5.73
- $(d, J = 3.8 \text{ Hz}, 1\text{H}), 4.70 4.65 \text{ (m, 1H)}, 4.42 4.32 \text{ (m, 1H)},$ 4.11–4.05 (m, 1H), 4.00 (td, $J = 7.7$, 1.5 Hz, 1H), 3.60 (dd, $J = 8.5, 7.0$ Hz, 1H), 2.24–2.09 (m, 1H), 1.82 (dd, $J = 14.0$, 3.8 Hz, 1H), 1.55 (s, 3H), 1.42 (s, 3H), 1.35 (s, 3H), 1.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 112.6, 109.8, 106.3, 81.3, 80.3, 77.5, 65.9, 33.4, 27.2, 26.6, 26.1, 25.2. Mass $(ESI-MS)$ m/z : 267 $(M+Na)^+$. HRMS calcd for $C_{12}H_{20}O_5$ Na: 267.1203 (M+Na)⁺. Found: 267.1208; (b) Spectral data of compound 8: $[\alpha]_D^{25}$ +5.8 (c 3.2, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 5.82 (d, J = 4.5 Hz, 1H), 4.67–4.64 (m, 1H), 4.31 (dd, $J = 9.8$, 1.5 Hz, 1H), 2.69 (d, $J = 14.3$ Hz, 1H), 2.32 (s, 3H), 2.11–2.02 (m, 1H), 1.37 (s, 3H), 1.25 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 208.8, 111.6, 106.5, 84.4, 79.5, 33.4, 26.5, 25.6, 25.3. Mass (ESI-MS) m/z : 209 (M+Na)⁺. HRMS calcd for C₉H₁₄O₄Na: $209.0734 \ (M+Na)^{+}$. Found: 209.0738.
- 16. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974–5976; (b) Martin, V. S.; Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237–6240; (c) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780.
- 17. Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M. Tetrahedron 1990, 46, 7033–7046.
- 18. (a) Spectral data of compound **9a**: $[\alpha]_D^{25}$ -28.5 (c 3.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 5.93–5.78 (m, 1H), 5.71 (d, $J = 4.5$ Hz, 1H), 5.29 (dd, $J = 17.3$, 1.5 Hz, 1H), 5.18 (dd, $J = 10.5$, 1.5 Hz, 1H), 4.77–4.71 (m, 1H), 4.15 (s, 2H), 4.07 (dd, $J = 8.3, 7.5$ Hz, 1H), 4.04–4.01 (m, 2H), 2.92 (br s, OH), 2.22 (dt, $J = 13.5, 7.5$ Hz 1H), 2.09 $(\text{ddd}, J = 13.5, 11.3, 3.7 \text{ Hz}, 1H), 1.56 \text{ (s, 3H)}, 1.40 \text{ (s, 3H)},$

1.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 133.9, 117.6, 113.4, 105.7, 88.5, 86.0, 80.6, 80.3, 70.3, 68.3, 57.2, 32.0, 27.5, 26.8, 25.1. IR (Neat): 3417, 2987, 2936, 1619, 1445, 1376, 1218, 1164, 1082, 931, 860 cm⁻¹. Mass (ESI-MS) m/z: 305 $(M+Na)^+$. HRMS calcd for C₁₅H₂₂O₅Na: 305.1363 $(M+Na)^+$. Found: 305.1364; (b) Spectral data of compound 9b: $[\alpha]_D^{25}$ +46 (c 3.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 5.92–5.77 (m, 1H), 5.70 (d, $J = 3.77$ Hz, 1H), 5.27 (dd, $J = 16.8$, 1.5 Hz, 1H), 5.19 (dd, $J = 9.8$, 1.5 Hz, 1H), $4.74-4.69$ (m, 1H), 4.13 (s, 2H), 4.07 (t, $J = 7.55$ Hz, 1H), 4.01–3.99 (m, 2H), 3.06 (br s, OH), 2.34–2.30 (m, 2H), 1.52 (s, 3H), 1.43 (s, 3H), 1.30 (s, 3H). 13C NMR (75 MHz, CDCl3): d 133.8, 117.5, 113.5, 106.1, 87.4, 85.8, 80.5, 80.4, 70.3, 69.1, 57.2, 33.0, 27.1, 26.8, 26.5.

- 19. (a) Jadav, P. K.; Brown, H. C. J. Am. Chem. Soc. 1983, 105, 2092–2093; (b) Jadav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432–439.
- 20. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413– 4450; (b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039–2041; (c) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.